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In this paper we implement a Fourier method to estimate high-frequency correlation matrices from small
data sets. The Fourier estimates are shown to be considerably less noisy than the standard Pearson correlation
measures and thus capable of detecting subtle changes in correlation matrices with just a month of data. The
evolution of correlation at different time scales is analyzed from the full correlation matrix and its minimum
spanning tree representation. The analysis is performed by implementing measures from the theory of random
weighted networks.
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I. INTRODUCTION

Robust correlation measures are important for derivatives
pricing, risk management, portfolio optimization, and under-
standing market microstructure effects. The conventional
method of computing correlation is the Pearson coefficient.
This method requires homogeneous time series. In order to
apply it to high-frequency data, the time series first need to
be homogenized and synchronized through an interpolation
scheme. An alternative, nonparametric approach has been
suggested in �1� where the variance-covariance matrix esti-
mator of a multivariate process is computed via Fourier
analysis. Previous applications of the method can be found in
�2–7�.

In this paper we compare the performance of the Pearson
and Fourier methods by computing returns cross-correlation
matrices at different time scales using one month �September
2002� of high-frequency trades in the member stocks of the
S&P100 index �8�. The selected stocks are grouped into 12
different industry sectors �9�: technology �16 stocks�, basic
materials �seven stocks�, financial �13 stocks�, capital goods
�three stocks�, conglomerates �five stocks�, energy �four
stocks�, services �16 stocks�, transport �four stocks�, utilities
�seven stocks�, health care �ten stocks�, noncyclical con-
sumer goods �noncyclical CG� �11 stocks�, cyclical con-
sumer goods �CG� �four stocks�. Three-quarters of the stocks
included in this analysis are very liquid and trade on average
at intervals shorter than 14 s. The least liquid stock, Allegh-
eny Technologies, has an average trading time of about a
minute.

The estimation of intraday correlations over short periods
of time �e.g., a month� is of high practical value for day
trading and hedging purposes. In fact, such estimates are
more sensitive to short time scale economic factors than cor-
relation measures obtained from averaging over several
months. Thus, we choose to investigate a month of tick-by-
tick data aiming to compare the quality of the information

that can be derived by applying each of the two methods on
limited statistics. The Fourier estimates reproduce the struc-
tural changes on filtered correlation matrices observed in pre-
vious studies �10–18� with much larger data sets. Moreover,
we show that the Fourier estimates are sufficiently accurate
to reveal further structural changes in the full, unfiltered,
correlation matrices.

II. FOURIER CORRELATION MEASURE

The Fourier method is model independent, produces very
accurate, smooth estimates, and handles the time series in
their original form without imputation or discarding of data.
A rigorous proof of the method is given in the original paper
by Malliavin and Mancino �1� and only the main results are
summarized below.

The method works as follows. Let Si�t� be the price of
asset i at time t and pi�t�=ln Si�t�. The physical time interval
�0,T� of the asset price series is rescaled to �0,2��. In this
case T represents the length of the entire time series ex-
pressed in the basic time unit of analysis. For example, if we
analyze the returns on an intrahourly time scale using one
month of trading data, T will have the value 10 560 min,
which is the equivalent of 22 trading days with 8 h of trading
per day. The variance-covariance matrix �ij of log �returns�
is derived from its Fourier coefficient a0��ij� which is ob-
tained from the Fourier coefficients of dpi:

ak�dpi� =
1

�
�

0

2�

cos�kt�dpi�t� ,

bk�dpi� =
1

�
�

0

2�

sin�kt�dpi�t�, k � 1. �1�

In practice, the coefficients are computed through integration
by parts. As pi�t� is not observed continuously but given by
unevenly spaced tick-by-tick observations of trade prices, the
actual implementation requires the integrals in �1� to be in
discrete form:
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ak�dpi� =
1

�
�
n=1

N

��pi�tn�cos�ktn� − pi�tn��cos�ktn��� − pi�tn��

��cos�ktn� − cos�ktn���� ,

bk�dpi� =
1

�
�
n=1

N

��pi�tn�sin�ktn� − pi�tn��sin�ktn��� − pi�tn��

��sin�ktn� − sin�ktn���� , �2�

where tn�= tn−1.
In �2�, N corresponds to the number of trades in the res-

caled interval and we set the price pi�t�= pi�tn−1� to compute
the integrals between two consecutive trading times �tn−1 , tn�.

The Fourier coefficient of the pointwise variance-
covariance matrix �ij is

a0��ij� = lim
�→0

��

T
�
k=1

T/2�

�ak�dpi�ak�dpj� + bk�dpi�bk�dpj�� .

�3�

The integrated value of �ij over the time window is defined
as �̂ij

2 =2�a0��ij� which leads to the Fourier correlation ma-
trix �ij = �̂ij

2 / ��̂ii · �̂ j j�.
The highest wave harmonic �T /2�� that can be analyzed is

determined by the lower bound of � �time gap between two
consecutive trades� which is 1 s for all S&P100 price series.
In this analysis we take �=3 min as the shortest time scale
and �=120 min as the longest one. These values have been
chosen to avoid asynchronicity bias at very short � and sta-
tistical errors at longer �, due to the limited length of the time
series.

III. NETWORK ANALYSIS

The correlation matrix can be represented as a network of
vertices �stocks� and weighted links �correlations�. As a way
of filtering information from noise in correlations, work
�10–15� has focused on the minimum spanning tree1 �MST�
representation of correlation matrices. In this paper we study
both the full correlation matrices and their MST representa-
tions using weighted network analysis measures.

Following �19,20� we define the degree of a vertex in the
network as ki=� j�V�i�1ij where the sum runs over the set V�i�
of neighbors of i and 1ij is an indicator function for whether
there is a connection between i and j. The strength of a
vertex is defined as si=� j�V�i�cij where cij is the correlation
between vertices �stocks� i and j. We use the degree ki as a
measure of stock centrality for MSTs and the strength si as a
measure of stock centrality in the original, unfiltered corre-
lation matrices. For the weighted clustering coefficient we
use the definition suggested in �21,22�:

Ci
w =

�
j,h

cijcihcjh

�
j,h

cijcih

. �4�

This definition reduces to the standard clustering coefficient
in the binary case and retains the property 0�Ci

W�1. For
alternative definitions of the clustering coefficient see, for
example, �23,24�.

For our analysis we consider only the positive elements of
the correlation matrices. This is to avoid a spurious effect on
the clustering coefficient and the strength resulting from
negative correlations. Less than 2% of the correlations are
negative as can be seen �for �=10 and 100 min� from Fig. 1
�bottom�. Even with this choice the correlation matrix re-
mains almost fully connected.

When analyzing intraday data, the choice of time scale on
which to measure correlations becomes crucial. In Fig. 1 we
plot the average correlation at different time scales, from
3 min to 2 h. The average correlation increases with the time
scale, a result known as the Epps effect �25�. A possible

1Given a connected, undirected graph, a spanning tree of that
graph is a subgraph which is a tree and connects all the vertices
together. Here we use the distance di,j =	2�1−ci,j� as the weight of
each edge. A minimum spanning tree or minimum weight spanning
tree is then a spanning tree with weight less than or equal to the
weight of every other spanning tree.

FIG. 1. �Top� Average correlation across all stocks increases
with the time scale for both the Fourier �continuous line� and the
Pearson �dashed line� methods. �Bottom� Correlation density func-
tion for two different time scales: 10 �continuous line� and 100 min
�dashed line�.
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explanation for this effect has been recently proposed
�4,6,26� not in terms of economic factors but as a conse-
quence of an asynchronicity bias which is particularly rel-
evant when correlation is measured between illiquid stocks.
Nonetheless, the average correlation increase with time scale
is accompanied by a structural change in the correlation ma-
trix as shown in �10–15� and more recently using the planar
maximally filtered graph method in �16–18�. This fact is dif-
ficult to explain purely in terms of the asynchronicity bias, as
this would imply that at short time scales the most central
sector is the most liquid one �i.e., technology stocks�, which
is not the case. On the contrary, the cluster of technology
stocks is on the periphery of the graphs at both time scales
shown in Fig. 2.

The above mentioned studies demonstrate that the shape
of the MST changes substantially with the time scale. On
very short time scales the MSTs are centralized graphs with a
few vertices that collect a large number of connections. On
longer time scales the graph structure becomes significantly
more dispersed with no obvious hubs. Figure 2 shows the
same type of qualitative result in our case as well. On the left
we plot the MST, obtained with the Fourier method on
10 min time scales and on the right at time scales of 90 min.

Before proceeding with the analysis we point out that the
robustness of the Fourier method with respect to the length
of the time series is an open question as an asymptotic theory
for this method has not yet been developed. Here we attempt
to quantify the estimation error by calculating the percentage
differences between two correlation matrices �and MSTs�
calculated at successive time scales. Differences are defined
as

d��� =
1

N2�
i,j


ci,j��� − ci,j�� + 1�

ci,j���

.

It seems reasonable to assume that once correlations have
stabilized �i.e., after the first 30 min during which we ob-
serve the Epps effect�, the variation in correlation at consecu-
tive 1 min difference intervals �for example 36 and 37 min
returns� is not due to economic factors but is in fact attrib-
utable to estimation errors. In Fig. 3 we plot the percentage
differences for the MST and the full correlation matrix. The
MST is, by construction, more noisy than the correlation
matrices and this is reflected in the distance fluctuations.
While the fluctuations settle around 2% for the full correla-
tion matrices, in the MST they are as high as 10%. We obtain
the same figures when calculating fluctuations of an indi-
vidual vertex degree, strength, and clustering. Thus, in the
rest of the paper we assume a Fourier error of 10% for the
MST degree and of 2% for the strength and clustering coef-
ficient. Furthermore, we note that while the error associated
with the Pearson measure increases with the time scale
�dashed line�, as a consequence of the interpolation proce-
dure which inevitably discards more and more of the avail-
able data, the Fourier estimates are unaffected �at least up to
the 2 h time scale� by the length of the series, due to the fact
that all observations are used to estimate correlations at all
time scales.

In order to quantify the structural change of the MST in
Fig. 2 �left� we plot the evolution, up to a 2 h time scales, of
the maximum degree in the MST. This is measured by the
degree of the most connected stock at any given time �not
necessarily the same one at each time scale�. We compare the

FIG. 2. �Color online� MST obtained with the Fourier method at 10 �left� and 90 min �right�. WMT is node 97 and GE is node 39. The
size of the dots representing the different stocks is proportional to the number of links. The color codes of the different industry sectors are
given in Table I below.
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results for the Pearson �dashed line� and Fourier �solid line�
correlation estimates. We notice that while the Pearson esti-
mate gives very noisy results on this small data set �also
visible in Fig. 1�, the Fourier estimator provides much more
consistent results across different time scales.

Figure 4 �right� shows the evolution of the maximum de-
gree for Wal-Mart Stores �WMT� and General Electric �GE�
obtained from the Fourier MST matrix. For both stocks the
degree rises quickly and remains high at time scales between
10 and 20 min. We find an average degree, for 3	�	30, of
7.36±2.94 for Wal-Mart and 5.96±2.99 for General Electric.
In �18� General Electric and Wal-Mart are reported as the
most connected stocks in 2002 at 5 min time scales, with the
degree of GE decreasing as the time scale increases. Our
results are in agreement with these previous findings. None-
theless, when averaging at all time scales up to 2 h, WMT
appears to be the most connected stock in the MST, with an
average degree of 6.19±2.05 versus an average degree of
2.73±2.46 for GE.

We look at the strength and clustering measures �as pre-
viously defined� in order to analyze the structural changes in
the full correlation matrix. While some analysis in this direc-

tion has been performed in previous studies, this was based
on filtered correlation matrices �either planary filtered graphs
�16–18� or graphs constructed by including only the stron-
gest N−1 links, with N being the number of stocks �13��.

In Fig. 5 �left� we plot the evolution, across time scales, of
the normalized strength of the most connected vertex in the
full correlation matrix calculated with both the Pearson
�dashed line� and the Fourier �continuous line� methods. The
normalized strength, at time scale �, is defined as s̃i���
=si��� / ĉ���, where ĉ���=�i,jcij��� is the total correlation.
Without this normalization the strength would trivially in-
crease with time scale as a result of the Epps effect. By
normalizing we can quantify the way the most correlated
stock is central to the network, in terms of its proportional
contribution to the total correlation. We notice again �Fig. 5
�left�� that the Pearson estimator is very noisy while the Fou-
rier estimator is significantly smoother. The Fourier estimator
also indicates a rise in the most correlated stocks relative
strengths at progressively shorter time scales under 20 min,
analogous to the increasing degree of the most connected
stock in the MST on short time scales.

FIG. 3. Distance between MSTs �left� and correlation matrices �right� at consecutive time scales of analysis for the Fourier �continuous
line� and the Pearson �dashed line� methods.

FIG. 4. �Color online� �Left� Maximum degree in the MST for Fourier �continuous line� and Pearson �dashed line� methods. �Right�
Degree of GE �red, square� and WMT �black, circles� as a function of the time scale, obtained with the Fourier method.
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The stocks that contribute the most, on average, to the
total correlation on time scales shorter than 30 min are again
WMT and GE, with relative strengths, respectively, of
�0.0133±1.6��10−4 and �0.0130±2.5��10−4. We also
show, in Fig. 5 �right�, that while the normalized strength of
GE decreases with the time scale the normalized strength of
WMT fluctuates around the same level across time scales.
For time scales up to 2 h, WMT remains one of the most
central stocks to the network, along with US Bancorp �USB�
and American Express �AXP�.

In Fig. 6 we plot the evolution, across time scales, of the
relative weighted clustering coefficient of the most clustered
stock in the full correlation matrix calculated with both the
Pearson �dashed line� and Fourier �continuous line� methods.
The relative weighted clustering coefficient is defined as

C̃i
w���=Ci

w��� / C̄w���, where C̄w��� is the scale � average
clustering coefficient. The normalization is also necessary in
this case as the clustering coefficient, defined in Eq. �4�,
would trivially rise purely as a consequence of the general
correlation level increase with the time scale. Again the Fou-
rier method provides smooth results which reveal that the

relative clustering coefficient of the most clustered stock in-
creases as the time scale falls below 20 min. Here, instead of
identifying the stock with the highest clustering coefficient,
we shift the analysis to the industry sectors. In Table I we
report the average of the intrasector relative strength and
intrasector relative clustering on time scales shorter than
30 min. A relative clustering �strength� larger than 1 implies
that intrasector clustering �strength� is larger than the average
clustering �strength� in the network. We first note that for
some sectors there is a significant difference between intra-
sector strength and clustering, revealing that not all the
stocks in that sector are highly correlated with each other.
This effect is particularly evident for the cyclical consumer
goods and the capital goods sectors. The most clustered sec-
tor at all time scales, up to 2 h, is the financial one. At short
time scales this is followed by services, technology, energy,
and noncyclical consumer goods. The study in �17� uses the
same sector classification but a different selection of stocks
�100 highly capitalized stocks instead of the member stocks
of the S&P100� and finds that the financial and the energy
sectors have the highest intrasector clustering, on planary
filtered graphs, on a daily time scale. This is in agreement

FIG. 7. �Color online� Relative clustering coefficient of the
seven most clustered industrial sectors.

FIG. 5. �Color online� �Left� Greatest normalized strength in the correlation matrix determined with the Fourier �continuous line� and the
Pearson �dashed line� methods. �Right� Fourier normalized strength of WMT �circle, black�, GE �square, red�, USB �diamond, green�, and
AXP �triangle, blue� as a function of time scale.

FIG. 6. Relative clustering coefficient of the highest cluster co-
efficient stocks by Fourier �continuous line� and Pearson �dashed
line� methods.
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with our results, even though we include only 13 stocks in
the financial sector while in �17� 24 stocks were selected. A
recent paper �27� analyzes the time evolution of the daily
clustering coefficient among industrial sectors between 1984
and 2000 and �even though the paper uses a different stock
classification� identifies the financial and energy sectors as
the most clustered ones after 1995.

Nonetheless our analysis leads to clearly different results
for the services sector �which includes Wal-Mart� which �17�
report as being poorly intraconnected. A possible reason for
this disagreement could be that the composition of this sector
is very different in the two studies �in �17� this sector is
composed of 20 stocks while in our study only seven stocks
are present�. Another possible reason may be the difference
in time scale at which the correlations are measured. In Fig.
7 we plot the relative clustering coefficient for the seven
most clustered sectors as a function of the time scale. We can
see that the ranking of sectors in terms of their relative clus-
tering coefficients changes considerably over time, and in
particular the services sector, which is the second most clus-
tered at short time scales, becomes only the fourth most clus-
tered on 2 h time scales. It may well be that the relative

clustering of this sector decreases even further on daily time
scales. The high clustering coefficient of some sectors is re-
flected in the MST. For example, the MST at 10 min in Fig.
2 �left� identifies very clearly the clusters associated with the
financial �red, triangle down�, services �orange, triangle left�,
noncyclical consumer goods �green, square�, and technology
�turquoise, triangle up� sectors. In contrast, at 90 min both
services and noncyclical consumer goods clusters are broken
while in addition to the financial and technology groups, the
basic materials sector �yellow, star� �the second most clus-
tered sector at this time scale� can be clearly identified.

IV. CONCLUSIONS

The analysis carried out in this paper provides further
evidence that the Fourier method of computing the correla-
tion matrix from high-frequency data is better than the tradi-
tional Pearson alternative in terms of generating smooth es-
timates from small sample data sets. Unfortunately, while
work is ongoing to establish this, no asymptotic theory for
the robustness of the Fourier method is currently available.

The Fourier MST representation of the correlation matrix
exhibits similar characteristics to those found in previous
studies. The graph is centralized on a very short time scale
and becomes more dispersed on longer time scales. The
analysis of the entire correlation matrix provides additional
evidence of the structural changes that affect the correlation
matrix at different time scales. As a result of our analysis we
find that Wal-Mart Stores and General Electric are the two
most central stocks both in the MST and in the full correla-
tion network on time scales shorter than 20 min. Further-
more, Wal-Mart has one of the highest centrality scores at all
time scales up to 2 h. At aggregate level we have identified
the financial, energy, and services sectors as the most intra-
connected at short time scales with the financial being the
most intraconnected at all time scales up to 2 h.

ACKNOWLEDGMENTS

We are very grateful to Roberto Renó, Vanessa Mattiussi,
Anirban Chakraborti, and Rosario Mantegna for stimulating
discussions.

�1� P. Malliavin and M. Mancino, Finance Stoch. 6, 49 �2002�.
�2� E. Barucci and R. Renó, J. Int. Financial Markets, Institutions

Money, 12, 182 �2002�.
�3� E. Barucci and R. Renó, Econ. Lett. 74, 371 �2002�.
�4� R. Renó, Int. J. Theor. Appl. Finance 6, 87 �2003�.
�5� O. V. Precup and G. Iori, Physica A 344, 252 �2004�.
�6� O. V. Precup and G. Iori, Eur. J. Finance �to be published�.
�7� V. Mattiussi and G. Iori, Debt, Risk and Liquidity in Futures

Markets, edited by B. A. Goss �Routledge, London, in press�,
Chap. 5.

�8� NYSE Trades and Quotes �TAQ� database. www.ngsedata.com
�9� According to the classification provided by finance.yahoo.com

�10� G. Bonanno, F. Lillo, and R. N. Mantegna, Quant. Finance 1,
96, �2001�.

�11� B. Bonanno, G. Caldarelli, F. Lillo, and R. N. Mantegna, Phys.
Rev. E 68, 046130 �2003�.

�12� G. Bonanno, G. Caldarelli, F. Lillo, S. Miccichè, N. Vande-
walle, and R. N. Mantegna, Eur. Phys. J. B 38, 363 �2004�.

�13� J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, and A.
Kanto, Phys. Scr., T 106, 48 �2003�.

�14� J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kertesz, Physica
A 324, 247 �2003�.

�15� J.-P. Onnela, K. Kaski, and J. Kertesz, Eur. Phys. J. B 38, 353
�2004�.

TABLE I. Intrasector relative strength and clustering coeffi-
cients at time scales shorter than 30 min.

Sector Size
Intrasector

strength
Intrasector
clustering

Technology 16 1.13 1.02

Basic materials 7 1.04 0.97

Financial 13 1.33 1.28

Capital goods 3 0.86 0.41

Conglomerates 5 1.01 0.87

Energy 4 0.97 1.02

Services 16 1.28 1.12

Transport 4 0.99 0.74

Utilities 7 0.84 0.80

Health care 10 1.07 0.94

Noncyclical consumer goods 11 1.08 1.02

Cyclical consumer goods 4 1.10 0.66

GIULIA IORI AND OVIDIU V. PRECUP PHYSICAL REVIEW E 75, 036110 �2007�

036110-6



�16� M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna,
Proc. Natl. Acad. Sci. U.S.A. 102, 10421 �2005�.

�17� C. Coronnello, M. Tumminello, F. Lillo, S. Miccichè, and R.
N. Mantegna, e-print physics/0609036.

�18� M. Tumminello, T. Di Matteo, T. Aste, and R. N. Mantegna,
e-print physics/0605251.

�19� A. Barrat, M. Barthélemy, and A. Vespignani, Phys. Rev. Lett.
92, 228701 �2004�.

�20� M. E. J. Newman, Phys. Rev. E 70, 056103 �2004�.
�21� Grindrod, Phys. Rev. E 66, 066702 �2002�.

�22� B. Zhang, and S. Horvath, Stat. Appl. Genet. Mol. Biol. 4, 17
�2005�.

�23� J.-P. Onnela, J. Saramki, J. Kertsz, and K. Kaski, Phys. Rev. E
71, 065103�R� �2005�.

�24� A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespig-
nani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 �2004�.

�25� T. Epps, J. Am. Stat. Assoc. 74, 291 �1979�.
�26� Lan Zhang, http://ssrn.com/abstract
885438.
�27� G. Tibely et al., Physica A 370, 145 �2006�.

WEIGHTED NETWORK ANALYSIS OF HIGH-FREQUENCY… PHYSICAL REVIEW E 75, 036110 �2007�

036110-7


